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We define the Lie algebra c(n) of centrosymmetric matrices. It generates a 
noncompact and nonsemisimple local Lie group with the unusual property that 
exp c(n) C c(n). The group contains an invariant subgroup of Lorentz boost/ 
dilation transformations. For n even, these form a subgroup of the conformal 
group of the Lorentzian metric with signature ( -  + - + . . . .  +). 

1. I N T R O D U C T I O N  

In the general linear (real) Lie algebra gl(n)  of  all n • n (n --> 2) matrices, 
we will define a subalgebra c(n) of  centrosymmetr ic  matrices. The starting 
point  is the matrix 

= (1) 

whose  elements vanish except for l ' s  along the reverse (or minor)  diagonal. '  
J is idempotent,  symmetr ic  (and consequently orthogonal) ,  and has determi- 
nant -1 :  

j 2  = I, j r  = j ,  det (J)  = ( - 1 )  n(n-l)rz (2) 

It fol lows f rom (2a) that 

e ~a = I cosh o~ + J sinh {x (3) 

so that in particular, J generates the Lorentz  Lie algebra when n = 2: 

span{J} = s o ( l ,  1) (n = 2) (4) 

N o w  we use J to define the mapping  

X ""> X c = J X J  ~ X c = X n + l - a , n + l -  b (5) 
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where the implication follows from (1). Centrosymmetric matrices (Weaver, 
1985) are those invariant under (5) (thus showing a reflection symmetry 
about the center of the matrix): 

c(n) = {X E gl(n)lXC = X} (6) 

J itself is obviously an element of c(n). Skew centrosymmetric matrices form 
the set 

-e(n) = {X ~ gl(n)lX c =  - x }  (7) 

It is clear that (5) is a linear and algebraic isomorphism of gl(n): 

(o.X + [3y)C = oO~c + [3yC, (XY) c = x C y  c ~ [X, y]C = [X c, yC] 

(8) 

where et, [3 are scalars. It follows from (6)-(8) that c(n) is a matrix Lie 
algebra (equivalently, a faithful representation of an underlying abstract Lie 
algebra), while ~(n) is an associative algebra under matrix product that is 
not closed under the Lie product (commutator). However, the commutator 
of skew centrosymmetric matrices is centrosymmetric, so that the derived 
algebra ~(n)' is a Lie subalgebra of c(n): 

~(n)' -- [P(n), P(n)] < c(n) (9) 

To our knowledge, c(n) has not been previously defined or investigated. In 
Section 2 we show that c(n) is noncompact and nonsemisimple, that it contains 
its exponential, and that c(2m) contains a boost-dilation subgroup of the 
conformal group of the Lorentzian metric with signature zero. In Section 3 
we consider in detail c(2) and the nonsolvable algebra c(3), whose derived 
algebra is isomorphic to sl(2, R). We extend the proof of nonsolvability to 
c(2m + 1) ,m >-- 1. 

2. GENERAL PROPERTIES OF c(n) 

It is instructive to compare the algebra based on centrosymmetry with 
the orthogonal algebra so(n) based on ordinary symmetry and the pseudo- 
orthogonal algebra so(p, n - p) (see Gilmore, 1974). Consider the defining 
relation for an element X of the three algebras: 

so(n): X r l  + / X  = 0 (10a) 

so(p, n - p): XrLp + LpX = 0 (10b) 

c(n): XJ - JX = 0 (10c) 
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where we have used (2a) and (6), and where 

- ~b (a, b -< p) 
(Lp)~ = L ~aO (a, b > p) 

( I 1 ) 

The conditions in (10a) and (10b) reflect the invariance of an inner product 
(x, Y)K -- xrKy  on R n under a Lie algebra g: 

(', ")r invariant under g r X r K  + KX = 0 for all X E g 

For so(n), K = I (Euclidean metric), while for so(p, n - p), K = Lp (pseudo- 
Euclidean or Lorentzian metric). From the form of (10c), there is no obvious 
inner product invariant under c(n). 

The dimension of c(n) follows from (5) as 

1 f 0  n even 
dim c(n) = ~ (n 2 + ~), ~ = ~1 n odd (12) 

By (3) we see that c(n) is a noncompact algebra. In particular, (4) shows 
that c(2) contains the Lorentz algebra as a subalgebra: 

so(I,  1) < c(2) (13) 

It follows from (8) that 

(eX) c = e xc 

so that the local Lie group generated by c(n) is characterized by 

A e exp c(n) ~ A c = A (14) 

Thus c(n) has the unusual property that it contains the local matrix Lie group 
which it generates: 

exp c(n) C c(n) (15) 

It follows from (5) and (6) that J commutes with c(n) (so that ad J is 
null). Thus 

it -- span{I}, j l  ---- span{J}, k2 -- span{I, J} = it + Jl (16) 

are Abelian ideals [furthermore, they are in the center of c(n)], and c(n) is 
consequently nonsemisimple. The adjoint representation of c(n) is thus 
non faithful. 

By (3), the invariant Abelian subgroup generated by k2 is 

exp k 2 --- {K(ot, 13) - / e  ~ cosh 13 + Je ~ sinh 131ct, 13 E R} (17) 

The transformation of R n by K(ct, 13) follows from (1) and (17) as 

x '~ = K(ct, 13)~bX b = e"(x ~ cosh 13 + x ~+l-~ sinh 13) (18) 
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For n = 2m (m >- 1), (18) is in the conformal group of the Lorentzian metric 
Lm, which has signature zero, i.e., 

L m ---> L"  - K(et, [3)LmK(ot, [3)r = e2aLm (19) 

Thus: f o r  n even, exp k2 is a boost-dilation subgroup o f  the conformal  group 
o f  the Lorentzian metric  with signature ( -  + - + . . . .  +).  

This conformal property does not extend to n = 2m + I. However, we 
will show in Section 3 that c(2m + I) is nonsolvable.  

3. EXAMPLES 

We consider the simplest cases of  n even and n odd. For n = 2, the 
algebra reduces to the Abelian ideal (16c), so that, using (4), 

c(2) = k 2 = il + so( I ,  1) 

which is consistent with (13). By (17), c(2) generates the Abelian group of  
matrices of form 

(e~ cosh [3 e~ sinh ~ )  
K(cx, [3) = ~e ~ sinh [3 e '~ cosh 

On the Minkowski plane, K(cx, [3) is a combined Lorentz boost and dilation, 
as follows from (18): 

t' = e'~t(v)[t + vx], x '  = d ' y ( v ) [ x  + vt] (20) 

where ~(v) - (1 - v2) - I n  (c = 1) is the Lorentz factor and v = tanh [3 is 
the boost velocity. By (20), K(et, [3) transforms the Minkowski metric Ln in 
accordance with (19). Thus exp c(2) is a subgroup of the conformal group 
on the Minkowski plane. 

For n = 3, using (5) and (6), we find that a natural basis is c(3) = 
span{Xn . . . . .  Xs}, where XI = L X2 = J, and 

x 3 =  0 , x 4 =  0 , 
1 0 

The nonzero commutators follow from(21) as 

Ix3, x4]  = x~ + x2  - 4x5, [x3, xs] = x3, 

Then from (22) it follows that 

c(3)' = span{X3, X4, X;}, 

Xs = 1 (21) 
0 

[X4, Xs] = -X4 (22) 

X ; - X I  + X 2 - 4 X 5  (23) 
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and we can show that 

c(3)" - [c(3)', c(3)'] = c(3)' ~ c(3) ~ = c(3)' :/: 0 for m -> 1 

Thus the derived series does not terminate, and hence (Gilmore, 1974; Jacob- 
son, 1979) c(3) is nonsolvable. 

The two-parameter subgroup (17) has the form 

:eCoSh0 0 e sin 00) 
e '~+~ 0 (24) 

K(ot, f3) = \ e~ sinh 13 0 e '~ cosh 

while the one-parameter subgroups generated by (21) are 

/i~ epX3 = , e <'~ = 1 , e ~ 5  = e ~ 

p 0 0 

(25) 

Then (24) and (25) describe the effect of exp c(3) on  R 3. If we consider only 
K(et, 13), with x ~ = (t, x, y), then, by (18), 

t '  = e"~l(v)[t + vy], x '  = e"+~x, y '  = e~ l ( v ) [ y  + vt] (26) 

Thus K(et, 13) is a combination of Lorentz boost plus dilation in the t - y  plane, 
with (different) dilation along x. The Minkowski metric is transformed under 
(26) as 

Ll  - - )L~  = e2~Ll + (e 21~ - 1)Xs 

so that K(ot, 13) is no longer in the conformal group (except for the trivial 
case 13 = 0). 

By (23), we can decompose c(3) as the direct sum 

c(3) = c(3)' + k2 (27) 

We can show that c(3)' is semisimple, in fact isomorphic to s/(2, R), so that, 
since k2 is trivially solvable, (27) is the Levi decomposition (Gilmore, 1974) 
of c(3). Now in the fundamental representation, sl(2, R) = span{Yb Y+, 
Y_ }, where 

so that 

[Y1, Y+] = 2Y§ [Y~, Y_] = - 2 r _ ,  [Y+, Y_] --- Y, (28) 
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The isomorphism c(3)' --~ sl(2, R) follows on comparing (22) and (28), with 
the correspondence 

1 1 1 
X3 4--* - ~  ]I+, X 4 ~ - - - ~  Y_, X; ~ - ~  El 

Finally, we can extend the result on nonsolvability from n = 3 to n = 
2m + 1. Consider the basis elements X~ = L X2 = J, and 

(X3)ab = (Sal -'1- 8a,2ra+l)Sb,m+ 1 

(X4)~ = ~o,m+t(~bl + ~b.2m+O (29) 

(Xs)~ = ~.m+lSb.m+t 

which are of the same form as (21). Using (29), we find 

[X3, Xs] = X3, [X4, Xs] = -X4, IX3, [X3, X4]] = -4X3 (30) 

Then (30) implies that X3 ~ c(2m + 1)' and that its adjoint operator is not 
nilpotent, i.e., (ad X3) 2 :/: 0. By Engels' theorem (Jacobson, 1979), this proves 
that c(2m + 1) is nonsolvable. 

In conclusion, the centrosymmetric Lie algebra c(n) has some interesting 
mathematical properties. Although there appears to be no inner product invari- 
ant under c(n), and therefore no obvious application of  c(n) as a classical 
or quantum symmetry algebra, it does generate boost/dilations, and c(2m) 
generates a subgroup of  the conformal group of  the Lorentzian metric with 
signature zero. We note also that centrosymmetric matrices arise as transition 
matrices for certain Markov processes, and that symmetric Toeplitz matrices 
are also centrosymmetric, and emerge in approximations to the kernels of  
certain integral equations (Weaver, 1985). 
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